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Over the past three decades, a wide variety of active control methods have been

proposed for controlling problematic vibration. The vast majority of approaches make

the implicit assumption that sensors or actuators can be located in the region where

vibration attenuation is required. However this is either not feasible or prohibitively

a result, optimal control of local vibration may lead to enhancement at remote locations.

Controlling remote vibration using only local sensing and actuation is an important

concept to resolve this remote vibration control problem. Recently, a geometric

methodology that provides an approach for defining the design freedom available for

reducing vibrations at both local and remote locations has been proposed by the

authors. In an earlier paper, the fundamental results were used to develop design

procedures for discrete frequency control; in the current paper, however, the focus is on

design procedures for broad band control. A systematic approach is developed that

provides an additional design constraint to the geometric methodology to ensure that

the resulting compensator provides closed loop stability. The design procedure is

illustrated through its application to an active vibration isolation structure.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Active vibration controller design has reached a high level of maturity following three decades of intensive
development and a number of design methods are now well established ([1–6], for example). The majority of approaches
assume implicitly that sensing and actuation can be applied in the region where vibration attenuation is ultimately
required, however, for many applications this is not feasible. Although it may be possible to recover the lost sensor
information with an observer, for example, direct forces often cannot be applied. Such problems are particularly evident in
large scale interconnected structures where either the environmental conditions do not allow a wide distribution of
sensors and actuators or it is prohibitively expensive to do so. Design based solely on information local to the actuators can
result in increased levels of vibration at remote locations. Therefore, the implementation of a locally sub-optimal solution
is necessitated for the attainment of a globally optimal one.

On the other hand, controlling remote vibration using only local sensing and actuation is also desirable in many
situations since actuators are expensive and/or heavy and are hence avoided in a system design [7]. Hence the study of
controlling remote vibration based only on local feedback action is of both theoretical interest and practical significance.
ll rights reserved.
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The feasibility of controlling remote vibration using only local sensing and actuation has previously been studied by the
authors [8]. A geometric design methodology for discrete frequency (or harmonic) control has been proposed, where the
design freedom available for providing both local and remote vibration attenuation is parameterised. In this paper, design
procedures for broad band control are presented. Specifically, the problem of disturbance attenuation over an arbitrary
frequency band is considered. It is found that an optimal broad band geometric controller can be designed via a linear
matrix inequality (LMI) approach. Remarkably, further design freedom can be defined, allowing designers to tune the
performance of the optimal geometric controller. The broad band results presented here are important extensions to those
obtained in [8] for harmonic control. They result in a systematic design procedure for tackling remote vibration control
problem and as a consequence, an optimal controller can be synthesized over an arbitrary frequency band. The
presentation in this paper is as follows: the procedures for geometric controller design are presented in Section 2;
additional design freedom for tuning the geometric controller is considered in Section 3; the problem of out-of-band
performance deterioration is analyzed in Section 4; in Section 5 the proposed design methodology is illustrated through
the application to an active vibration isolation system and Section 6 concludes the paper.

2. Geometric controller design

2.1. Preliminaries

It is assumed that the vibrating system can be described by the following frequency response function (FRF):

yðjoÞ
zðjoÞ

" #
¼

g11ðjoÞ g12ðjoÞ
g21ðjoÞ g22ðjoÞ

" #
uðjoÞ
dðjoÞ

" #
(1)

where y(jo), z(jo), u(jo) and d(jo) represent the locally measured vibration, the remote vibration, the control force and
the disturbance force, respectively. The control aim is to achieve reductions in both y(jo) and z(jo) (where possible) over
an arbitrary frequency band [o1,oN] through application of the feedback control law:

uðjoÞ ¼�kðjoÞyðjoÞ (2)

In the case that a measurement of z(jo) is not available during implementation, it is assumed that the transfer function
matrix:

G¼
g11ðjoÞ g12ðjoÞ
g21ðjoÞ g22ðjoÞ

" #
(3)

can be obtained during a commissioning phase. It is seen that the system model, Eq. (1), together with controller, Eq. (2),
can be represented by the linear fractional transformation description (Fig. 1) that is commonly used in modern HN and H2

design procedures. But it will be seen that the design procedure developed here can retain important information about
solution existence and design freedom.

2.2. Introduction to geometric controller design

Denote the sensitivity and complementary sensitivity at a discrete frequency o=o0 byS(jo0) and T(jo0), respectively.
By defining the following equations:

aðjo0Þ ¼ Sðjo0Þ�1¼�Tðjo0Þ (4)

and

aðjo0Þ ¼ bðjo0Þgðjo0Þ with gðjo0Þ ¼
g11ðjo0Þg22ðjo0Þ

g12ðjo0Þg21ðjo0Þ
(5)

it can be shown [8] that reduction in y(jo) and z(jo) for the discrete frequency o=o0 is equivalent to satisfying the
following conditions, respectively:

jaðjoÞþ1jo1 (6)
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Fig. 1. Linear fractional transformation representation.
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and

jbðjoÞþ1jo1 (7)

From the observation that Eq. (5) relating a(jo) and b(jo) defines a Möbius transformation, it is clear that the mapping
of Eq. (7) on complex a-plane is a circle (and its interior) with centre at �g(jo0) and radius |g(jo0)|. Hence it can be
concluded that simultaneous reduction of y(jo) and z(jo) is achievable for this discrete frequency o=o0 if and only if the
mapping of the unit circle (and its interior) |b(jo)+1|o1 on the complex a-plane intersects the unit acircle (and its
interior) |a(jo)+1|o1, and the corresponding reduction is scaling with respect to each circle. Finally it is noted that an
optimal line joining (�1, 0) with (�g(jo0)) on the complex a-plane can be defined and desired levels of attenuation can be
obtained by choosing an appropriate point on the line, e.g. a choice at point �g(jo0) provides infinite attenuation in z(jo0).
These fundamental results have been exploited to develop a design methodology for harmonic control by the authors
in [8].

The aim of reducing y(jo) and z(jo) over an arbitrary frequency band [o1,oN] can be approached on a frequency-by-
frequency basis. However, it is noted that the optimal choice aopt is to be varied from one frequency to the next over the
desired frequency band oA[o1,oN] and this results in an optimal trajectory on the complex a-plane. These observations
are illustrated in Fig. 2.

However it is not true to state that a compensator then exists that can provide simultaneous reduction across an
arbitrarily wide range of frequencies, since closed loop stability is not considered. It turns out (Proposition 5 in [8]) that
internal stability will be guaranteed if aopt(jo) is a mapping of a stable function, provided that g11(jo) is minimum phase.
As a result the optimal broad band geometric controller can be obtained from kðsÞ ¼ �aðsÞ=ð½aðsÞþ1�g11ðsÞÞ, which follows
from the definition of sensitivity. Thus the question that needs to be answered is how to find such a stable transfer function
a(s) given the optimal choice aopt over any target frequency band [o1,oN]. This is considered in the following section.

2.3. Obtaining an optimal broad band geometric controller via LMIs

Given the data points resulting from the optimal choice aopt over [o1,oN], the problem of fitting a stable transfer
function a(s) to these points consists of two sub-problems: one is the existence problem, or the possibility of finding a
stable transfer function a(s) that interpolates the data points; the other is the optimization problem, namely finding the
best approximation to the given data points in the event of a failure to provide exact interpolation. The existence problem
turns out to be a Nevanlinna–Pick interpolation problem, which widely occurs in robust identification, signal processing
and circuit theories [9,10]. The answer to this is provided by a modified Pick condition as shown in [11]:

Existence problem. : A stable transfer function a(s) that interpolates the optimal choice aopt over [o1,oN] exists if and
only if the following Pick matrix P

P¼
1�akal

___
=M2

jðok�olÞþ2a

� �
1rk,lrN

(8)

is positive definite, where ai is the optimal choice a(joi) for frequency oi 8i 2 ½1,N�; a and M are positive real numbers
defining the minimal degree of stability and maximum modulus of a(s) on the half plane RðsÞZ�a (or more accurately
MZsupRðsÞZ�ajaðsÞj), respectively.
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Fig. 2. (a) Mapping of |b(jo)+1|o1 on the complex a-plane for a frequency o0 and (b) optimal solution aopt(jo) on the complex a-plane for broad band

control.
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Optimization problem. : When the Pick matrix above fails to be positive definite, there does not exist a stable transfer

function a(s) that interpolates exactly through the optimal choice a(joi) 8i 2 ½1,N�. The problem of finding the best
approximation to the data points proves to be provided by a series of linear matrix inequalities (LMIs). This is obtained in

[11] by defining T0 ¼
1

jðok�olÞþ2a

h i
1rk,lrN

and Q ¼ blockdiag a1
M , . . . , aN

M

� �
and then the Pick Matrix P can be rewritten as

P¼ T0�QT0Q� (9)

where * is the Hermitian operator. It follows from the Schur complement lemma that P is positive definite if and only if

T0 Q

Q� T�1
0

" #
40 (10)

Eq. (10) together with those LMIs defining the uncertainty around each data points ai for frequency oi, when presented with
an LMI solver [12], provides the best approximation to the optimal choice a(joi) over the frequency band [o1,oN]. The desired
stable transfer function a(s) can then be obtained from the interpolation data (see [13] for its transfer function or state-space
representation). By the definition of sensitivity the broad band geometric controller is thus kðsÞ ¼�aðsÞ=ð½aðsÞþ1�g11ðsÞÞ.

Remark. : For optimal choice a(joi) with complex values, the resulting stable transfer function can have complex
coefficients. A method that can be utilized to produce a real, rational and stable transfer function runs as follows: augment
the complex conjugate values of a(joi) into the interpolating set and solve the N-P problem, resulting in complex-valued
K(s); then kðsÞ ¼ ðKðsÞþK� ðsÞÞ=2 is the desired real, rational and stable transfer function that interpolates the desired
optimal choice a(joi) over [o1,oN], where K*(s) is K(s) with complex coefficients replaced by their complex conjugates.

3. Performance tuning

For any design methodology it can be very important to provide additional freedom to tackle objectives beyond the
main design goal. But it is also important to be able to describe the effects of design freedom in terms of system
performance. The optimal choice ai defines directly the levels of attenuation in y(jo) and z(jo). It is also noted that the Pick
condition introduces additional design parameters, namely the minimal degree of stability a and the maximum modulus M

of a(s) on the half plane RðsÞZ�a. Their introduction arises from the determination of the existence of a stable transfer
function a(s) that interpolates exactly through the optimal choice a(joi) 8i 2 ½1,N�. The consequence is that a stable a(s)
cannot be found to interpolate a(joi) when the Pick matrix fails to be positive definite. Hence an approximation to the
optimal choice a(joi) has to be made to obtain a stable a(s) (to ensure internal stability). In the following it is shown that a

and M can be used to increase the accuracy of the approximation and hence improve performance of the broad band
geometric controller k(s) within the targeted frequency band [o1,oN].

Denote the ith eigenvalue of P by li, which is a real number following from the fact that P is Hermitian; then a
fundamental theorem from linear algebra states that the sum of eigenvalues is equal to the matrix trace. That is

XN

i ¼ 1

li ¼ traceðPÞ ¼

N�
PN

k ¼ 1

jakj
2=M2

2a
(11)

Thus
PN

i ¼ 1

li is monotonic with respect to a or M. Hence increasing M or decreasing a can increase the ‘‘positiveness’’ of
PN

i ¼ 1

li.

With a large enough M or small enough a, the Pick matrix can eventually become positive definite and therefore allows an exact

interpolation with a stable a(s) to the optimal choice a(joi) 8i 2 ½1,N�. This leads to the following tuning rule:
Tuning rule: The performance of the broad band geometric controller k(s) within the target frequency band [o1,oN] can

be refined by decreasing a or increasing M.
However caution is required since on allowing the stability margin a to be small the system becomes more vulnerable

to instability and in addition, on allowing the maximum modulus M of a(s) on the half planeRðsÞZ�a to be large the
performance outside the targeted frequency band [o1,oN] can be ‘‘potentially’’ sacrificed. To see this, it is noted that
the maximum deterioration in y(jo) and z(jo) is determined by the HN norm of a(jo)+1 and b(jo)+1. But

:aðjoÞþ1:
1
r:aðjoÞ:

1
þ1oMþ1 (12)

This is so since from definition MZsupRðsÞZ�aaðsÞ and by the maximum modulus principle we have

MZsupjaðsÞj4
RðsÞZ�a

supjaðsÞj
RðsÞ ¼ 0

¼ supjaðjwÞj ¼ :aðjwÞ:
1

(13)

The maximum deterioration in z(jo) is

:bðjoÞþ1:
1
¼ :

aðjoÞ
gðjoÞ

þ1:
1
r:aðjoÞ:

1
:

1

gðjoÞ
:
1
þ1oMNþ1 (14)

where :1=gðjoÞ:
1
�N.
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From Eqs. (12) and (14) it is seen that out of band deterioration in y(jo) and z(jo) for the worst case can be alleviated by
decreasing M. However the tuning rule elaborated above states that performance of the broad band geometric controller
and hence in-band-performance can be improved by increasing M. It is strongly emphasized that this is not a compromise
that has to be made between in-band and out-of-band performances: increasing M can improve the in-band performance
but not necessarily deteriorate the out-of-band performance. This is so since improvement of in-band performance refers
to the ‘‘closeness’’ with a desired specification while out-of-band deterioration expresses the fact that disturbances cannot
be reduced over all frequencies. The latter is often termed as a ‘‘waterbed effect’’ associated with non-minimum-phase
plants [14] or more generally Bode’s sensitivity integral theorem [15].

By asserting that re-design M has no cause-and-effect relationship with the out-of-band performance deterioration, it is
immediately pointed out that out-of-band deterioration as embodied in Bode’s integral theorem is a fundamental design
limitation that cannot be resolved by any advanced controller design method. An understanding of this limitation will be
very helpful for geometric broad band controller design and the phenomenon of out-of-band deterioration. This is
examined in the next section and we conclude this section by pointing out that the above tuning rule retains its usefulness
as a design guide.

4. Out of band deterioration

The problem of performance deterioration out of the targeted frequency band is closely related to a fundamental
limitation imposed by feedback control structure, namely that expressed by Bode’s integral theorem. For a system whose
loop transfer function is stable with at least 2-pole roll-off, this theorem can be expressed as [16]Z 1

0
lnjSðjoÞjdo¼ 0 (15)

where S(jo) is the sensitivity function. As pointed out in the last section, this unity requirement puts a fundamental
constraint on feedback design that is not conquered by any advanced feedback controller design method. Many control
design puzzles can be explained through this unity constraint. In the broad band geometric controller design methodology
elaborated above, it is thus pondered that there might exist fundamental limitations on both sensitivity S(jo), which is a
measure of reduction in local vibration y(jo), and the quantity (b(jo)+1), which is a measure of reduction in remote
vibration z(jo). Indeed, such limitations exist and can be quantified by the design freedom a. Denote the set of solutions of
a=�1 in Re s40 by {mi}, the set of solutions of a=�g in Re s40 by {ni} and the remote vibration reduction by R(jo).
Further assume a has at least 2-pole role-off1; then the following fundamental results hold.

Theorem 1. The reduction in local vibration y(jo) is constrained by the following integral relationship:Z 1
0

lnjSðjoÞjdo¼ p
X

ReðmiÞ (16)

Theorem 2. If a/g has at least 2-pole role-off, the reduction in remote vibration z(jo) is constrained by the following integral

relationship: Z 1
0

lnjRðjoÞjdo¼ p
X

ReðniÞ (17)

Proof. Denote Smp(s) and Sap(s) as the minimum-phase and all-pass partitions of S(s), respectively; then it can be shown
(Lemma 3, p. 96, [14]) that for every point s0=s0+ jo0 with s040

lnjSmpðs0Þj ¼
1

p

Z 1
�1

lnjSðjoÞj s0

s0
2þðo�o0Þ

2
do (18)

Taking o0=0 results in

lnjSmpðs0Þj ¼
1

p

Z 1
�1

lnjSðjoÞj s0

s0
2þo2

do (19)

That is

p
2
s0 lnjSmpðs0Þj ¼

Z 1
0

lnjSðjoÞj s0
2

s0
2þo2

do (20)

Taking the limit of the above equation as s0-N, we haveZ 1
0

lnjSðjoÞjdo¼ p
2

lim
s0-1

s0 lnjSmpðs0Þj (21)
1 From Eq. (4), the relationship between loop transfer function L and a can be expressed as a=�L/1+L. Hence a has the same pole roll-off rate as L.
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Noting that Smp(s)=S(s)/Sap(s), Eq. (21) can be rewritten asZ 1
0

lnjSðjoÞjdo¼ p
2

lim
s0-1

s0 lnjSðs0Þj�
p
2

lim
s0-1

s0 lnjSapðs0Þj (22)

By definition S(s0)=1+a(s0); also since a has at least 2-pole role-off, aðs0Þ � A=sk
0 for some constant A and kZ2 as s0-

N. Hence from the Maclaurin’s series expansion, lnð1þaðs0ÞÞ ¼
A
so

k�
A2

2s0
2k þ � � �

Therefore the first term of the right hand side of Eq. (22) converges to zero ass0-N. Eq. (22) now readsZ 1
0

lnjSðjoÞjdo¼�p
2

lim
s0-1

s0 lnjSapðs0Þj (23)

Since the zeros of the sensitivity function are the set of solutions of a=�1, Sap(s0) in the above equation can therefore be

expressed as

Sapðs0Þ ¼
Y

i

s0�mi

s0þmi
(24)

Eq. (23) can thus be rewritten asZ 1
0

lnjSðjoÞjdo¼�p
4

lim
s0-1

s0

X
i

lnð1�
2ReðmiÞ

s0
þ
jmij

2

s2
0

Þ�lnð1þ
2ReðmiÞ

s0
þ
jmij

2

s2
0

Þ

" #
(25)

Applying again the Maclaurin’s series expansion leads toZ 1
0

lnjSðjoÞjdo¼�p
4

X
i

lim
s0-1

s0 �
2ReðmiÞ

s0
�

2ReðmiÞ

s0
þ � � �

� �
(26)

That is Z 1
0

lnjSðjoÞjdo¼ p
X

i

ReðmiÞ (27)

This proves Theorem 1 &.

On the other hand, from Eq. (7) it is clear that R(jo)=1+b(jo), which is simply a definition of the level of reduction in the
remote vibration z(jo). With the help of Eq. (5) we have

RðjoÞ ¼ 1þ
aðjoÞ
gðjoÞ (28)

Therefore the set of unstable zeros of R(s) is {ni}, and hence all-pass part of R(s) can be expressed as

RapðsÞ ¼
Y

i

s�ni

sþni
(29)

Therefore if a/g also has at least 2-pole role-off, the procedures in proving Theorem 1 can be reproduced here to validate
Theorem 2.

In Eqs. (16) and (17), both Re(mi) and Re(ni) are positive; therefore the best situation for reduction in local vibration
y(jo) and remote vibration z(jo) is expressed by Z 1

0
lnjSðjoÞjdo¼ 0 (30)

and Z 1
0

lnjRðjoÞjdo¼ 0 (31)

Hence both local vibration y(jo) and remote vibration z(jo) cannot be suppressed over all frequencies and this is the
ultimate reason for out-of-band performance deterioration.

5. Example: geometric controller design for an active vibration isolation system

5.1. Active vibration isolation structure

Fig. 3 shows an idealised three-degree-of-freedom active vibration isolation mount. In a typical application, not only
would the vibration in mz caused by the disturbance d be required to be minimized to protect the payload, but also the
transmitted vibration in my should be optimized to reduce the force transmitted to the receiving structure (denoted by the
solid rectangle in Fig. 3). In the following, the geometric broad band controller design methodology is illustrated by its
application to this system, assuming that control is applied only at my, for example through the use of an inertial actuator.
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Fig. 4. (a) Remote disturbance response z(jo) and (b) disturbance transmission.
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The system considered has mass, stiffness and damping matrices as follows:

M¼

1 0 0

0 1 0

0 0 1

2
64

3
75, C ¼

4 �1 �2

�1 1 0

�2 0 2

2
64

3
75 and K ¼

4 �1 �1

�1 2 �1

�1 �1 2

2
64

3
75

The system can be readily written in the form of (1):

yðjoÞ
zðjoÞ

" #
¼

g11ðjoÞ g12ðjoÞ
g21ðjoÞ g22ðjoÞ

" #
uðjoÞ
dðjoÞ

" #

5.2. Design broad band geometric controller

Fig. 4(a) shows the frequency response of remote vibration z to excitation by disturbance d (the plot is therefore of
|g22(jo)|). It can be seen that the first resonance occurs at 0.1 Hz and this leads to a peak in the transmission path, as can be
seen in the my response to the same forcing (|g12(jo)|) in Fig. 4(b).

Therefore a control scenario can be considered where the objective is to provide optimum reduction in mz (z: remote
location) without increasing vibration in my (y: local end) over a frequency band, e.g. [0.06, 0.14] Hz centred on the
resonance at 0.1 Hz. The optimal choice (the data points over [0.06, 0.14] Hz) can be computed from elementary geometric
arguments by considering the relative locations of the a-circle and b-circle illustrated in Fig. 2. With the assumption
a=0.25 and M=3, it is found that the Pick matrix is not positive definite and therefore the Pick condition is violated, and
hence the initial optimal choice is infeasible. The application of the above optimization over LMIs, while setting the real
and imaginary parts of uncertainty for the initial data set to be uniformly bounded within 0.08, results in a ‘‘new’’ feasible
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optimal choice. With this new feasible optimal choice, the closed-loop as well as the open-loop FRFs are illustrated in Fig. 5.
Also shown are the closed-loop FRFs that would have resulted from the original optimal choice, had this been feasible.
The deviation between the two closed-loop FRFs reveals the accuracy of the approximation and hence the loss relative to
the theoretical performance. It is clear that the deviation in achieving the feasible solution is very small. The design
procedure proposed is therefore practically viable.

5.3. Tuning geometric controller performance

Now increase the value M=3 to 4 while still assuming a=0.25 with uncertainty bound 0.08 in the above example, it is
found that the Pick condition is still violated, and hence the initial optimal choice is still infeasible. The application of the
above optimization over LMIs results in another new set of feasible optimal points. The resulting closed-loop FRFs are
compared as illustrated in Fig. 6. It can be seen that the accuracy of approximation has increased and so the loss relative to
the theoretical performance becomes smaller. Finally it is noted that when M increases to M=6 or a decreases to a=0.15,
the Pick matrix becomes positive definite and this which results in an exact interpolation and hence no loss relative to the
theoretical performance. The tuning rule thereby indeed retains its usefulness as a design guide. This validates the results
presented in Section 3.
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Fig. 5. Open-loop and closed-loop FRFs with feasible and infeasible optimal choice: (a) remote vibration z and (b) local vibration y.
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Fig. 6. Tuning of geometric broad band controllers for (a) remote vibration z and (b) local vibration y—comparison of closed-loop FRFs with different a

and M pairs. Dotted line is the original infeasible optimal choice and hence can be seen as a reference when a and M pair is tuned. It is seen that increasing

M can improve accuracy of approximation and hence broad band controller performance in relation to the prescribed specification.
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5.4. Out of band deterioration and controller simulation

Since the resulting interpolating transfer function has a 2-pole roll-off and the unstable solution of a=�1 is 41.42 then
from Theorem 1

Z 1
0

lnjSðjoÞjdo¼ 41:42p (32)

Meanwhile a/g has a 4-pole roll-off and there are 4 unstable solutions of a=�g at 0.0170.9448j and 0.01470.352j

then from Theorem 2:

Z 1
0

lnjRðjoÞjdo¼ 0:048p (33)

The particular numbers in the right hand side of the above equations are not the main concern since the area can be
balanced over an infinitely wide frequency range. But they do reflect some design preferences, e.g. a large number can well
indicate there is either performance deterioration over a wide frequency band or a large peak over a certain narrow
frequency band. Fig. 7 shows the open and closed loop performance over the whole frequency band. It can be seen clearly
that performance deterioration exists both for the local vibration y and the remote vibration z.

Finally, Fig. 8 shows simulation results for the geometric broad band controller. The broad band disturbance is
simulated as a random disturbance passing through a band-pass filter. With reference to the theoretical performance
shown in Fig. 5, it can be seen that the method has successfully enabled an extension of the geometric design approach for
control of remotely located vibrating systems to the broad band case.
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Fig. 7. Whole-band geometric controller performance: (a) remote vibration z and (b) local vibration y.
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Fig. 8. Geometric controller performance: (a) remote vibration z and (b) local vibration y.
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6. Conclusions

A geometric methodology has been developed for broad band control of remotely located vibrating systems. This
method is particularly targeted at situations where it is required to apply control at a particular point on a structure but
sensors and actuators are located only at some remote location. The approach results in a straightforward design strategy
where design freedom can be directly related to system performance. A calculation of feasible controllers is carried out via
convex optimization over LMIs. These theoretical considerations have been validated through their application to the
broad band control of vibration in an active vibration isolation system.
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